Ornstein–Uhlenbeck related models driven by Lévy processes
نویسندگان
چکیده
Recently, there has been increasing interest in continuous-time stochastic models with jumps, a class of models which has applications in the fields of finance, insurance mathematics and storage theory, to name just a few. In this chapter we shall collect known results about a prominent class of these continuoustime models with jumps, namely the class of Lévy-driven Ornstein–Uhlenbeck processes, and their generalisations. In Section 6.2, basic facts about Lévy processes, needed in the sequel, are reviewed. Then, in Section 6.3.1 the Lévydriven Ornstein–Uhlenbeck process, defined as a solution of the stochastic differential equation dVt = −λVtdt+ dLt, where L is a driving Lévy process, is introduced. An application to storage theory is mentioned, followed by the volatility model of Barndorff-Nielsen and Shephard (2001a, 2001b). Then, in Sections 6.3.2 and 6.3.3, two generalisations of Ornstein–Uhlenbeck processes are considered, both of which are based on the fact that an Ornstein–Uhlenbeck process can be seen as a continuoustime analogue of an AR(1) process with i.i.d. noise. In Section 6.3.2 we consider CARMA processes, which are continuous-time analogues of discrete time ARMA processes, and in Section 6.3.3 we consider generalised Ornstein– Uhlenbeck processes, which are continuous time analogues of AR(1) processes
منابع مشابه
Method of Moments Estimation of Ornstein-Uhlenbeck Processes Driven by General Lévy Process
Ornstein-Uhlenbeck processes driven by general Lévy process are considered in this paper. We derive strongly consistent estimators for the moments of the underlying Lévy process and for the mean reverting parameter of the Ornstein-Uhlenbeck process. Moreover, we prove that the estimators are asymptotically normal. Finally, we test the empirical performance of our estimators in a simulation stud...
متن کاملOn exit times of Lévy-driven Ornstein–Uhlenbeck processes
We prove two martingale identities which involve exit times of Lévy-driven Ornstein–Uhlenbeck processes. Using these identities we find an explicit formula for the Laplace transform of the exit time under the assumption that positive jumps of the Lévy process are exponentially distributed.
متن کاملInfinite dimensional Ornstein-Uhlenbeck processes driven by Lévy processes
We review the probabilistic properties of Ornstein-Uhlenbeck processes in Hilbert spaces driven by Lévy processes. The emphasis is on the different contexts in which these processes arise, such as stochastic partial differential equations, continuous-state branching processes, generalised Mehler semigroups and operator self-decomposable distributions. We also examine generalisations to the case...
متن کاملTail Behavior of Multivariate Lévy-Driven Mixed Moving Average Processes and supOU Stochastic Volatility Models
Multivariate Lévy-driven mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t − s)Λ(dA, ds) cover a wide range of well known and extensively used processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated) CARMA processes and increments of fractional Lévy processes. In this paper, we introduce multivariate MMA pro...
متن کاملFractional Lévy driven Ornstein-Uhlenbeck processes and stochastic differential equations
Using Riemann-Stieltjes methods for integrators of bounded p-variation we define a pathwise integral driven by a fractional Lévy process (FLP). To explicitly solve general fractional stochastic differential equations (SDEs) we introduce an Ornstein-Uhlenbeck model by a stochastic integral representation, where the driving stochastic process is an FLP. To achieve the convergence of improper inte...
متن کامل